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Abstract—In this project, a raytracing program was designed
using Python. The optical raytracer manages to simulate raybun-
dles of a given diameter and propagate them through various
optical elements. Specifically, this project focused on spherical
refracting surfaces. The program can find intercepts of the
surface and a given ray, and propagate said ray through the
surface by using Snell’s Law. In order to test the program,
both orientations of a plano-convex lens were compared by
determining the amount of spherical aberration in each case.
The program can also find the paraxial focal point of a singular
spherical refracting surface and place the output plane there.
This value is very close to the theoretical prediction of the
paraxial focal point according to the paraxial approximation.

I. INTRODUCTION

LENSES are used in a broad range of contexts from
telescopes to bundling lasers to cut materials. In order to

calibrate them effectively, computational raytracers are com-
monly used to calculate the optimum focal point of the lens.
This is especially useful for instances where a laser needs to
be positioned at the correct distance from a lens to illuminate
a surface with maximum intensity. In this project, Python was
used to code a program which finds the paraxial focal point of
an optical environment. Object oriented programming enabled
the involved rays, refracting surfaces, and output planes to
interact with each other as objects. The project simulates either
a single light ray or a beam of rays, which are refracted by
an optical element, such as a lens, and then hit an output
plane. Crucial components of the code included being able
to determine intercepts of the rays with a spherical surface
component or a plane, to refract light rays by Snell,’s Law, to
determine the paraxial focal point of the optical component,
and to plot the ray diagrams. In order to focus a beam of light
effectively, it is important to minimise spherical aberration. A
measure of how focused a ray bundle is was calculated in the
for of the rms value of the deviation from the z - axis of each
ray’s intercept with the output plane.

II. BACKGROUND

A. Snell’s Law

Snell’s law describes the angles through which a ray is
refracted when it crosses a boundary between two materials
with refractive indices n1 and n2. It is typically given as [1]

n1 sin(θ1) = n2 sin(θ2) (1)

where θ1 is the angle of incidence and θ2 is the angle of
refraction of the ray with the normal of the refracting surface.
In this project, it was more useful to consider the vector form
[2] of the equation, which is

k2 =
n1
n2

k1 + (
n1
n2

cos(θ1)− cos(θ2))n (2)

where k1 is the incident vector, k2 is the refracted vector,
and n is the surface normal pointing from the light source to
the surface. All vectors are unit vectors.

B. Spherical Aberration

1) Spherical Refracting Surfaces: Spherically refracting
surfaces were a crucial part of this investigation. This kind
of surface can be thought of as the slice of a sphere up until
the aperture radius, ra. The z - axis is defined as passing
through the centre of the sphere from left to right, with
z0 being the intercept of the surface with the axis, and o
being the position of the centre of curvature, as illustrated
in Fig.1. Spherically refracting surfaces are characterised by
their curvature, which is the reciprocal of the curvature radius,
rc. Simply put, positive curvature means the left side of
the sphere, whereas negative curvature is the right side. A
schematic of a spherically refractive surface is shown in Fig.1.

Fig. 1: Schematic diagram of a spherical refracting surface
between materials with refractive indices n1 and n2 where rc
is the radius of curvature, ra is the aperture radius, q is the
intercept with a ray, o is the centre of curvature, and z0 is the
intercept between the surface and the z - axis.

Whenever a flat refracting surface was used in this project,
it was defined as a spherical refracting surface with curvature
equal to zero.

2) Spherical Aberration: Rays which start at different dis-
tances from the z - axis and travel parallel to it, are refracted by
different angles when they pass through a spherical refracting
surface. Spherical aberration means that rays further away
from the axis (shown in blue in Fig.2.) intercept the z - axis
before paraxial rays do. Paraxial rays intercept the surface
closer to the axis (red in Fig.2.). When the focal point of a
refracting surface is determined, the paraxial focal point is
normally considered; this is the point at which paraxial rays
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intercept the z - axis. This is point b in Fig.2. However, the
outer rays have continued propagating beyond the z - axis by
the time the focal point is reached, which means that the beam
of rays hits the paraxial plane at b in a circle of a given radius
rather than a point. This is referred to as longitudinal spherical
aberration [3] , or LSA.

Fig. 2: Simple ray diagram demonstrating spherical aberration.
Rays which intercept a refracting surface further away from
the z - axis(blue), intercept said axis at any point a, which is
before the paraxial focal point, b.

A very focused beam of rays means that the LSA is small. In
this project, an output plane was located at the paraxial focal
point. The root mean square value of the distance between
each individual ray’s intercept with the plane and the z-axis
was found as a measure of how sharp the produced image
would be. This was calculated using the equation

rms =

√∑N
i=1 x

2
i + y2i

N
(3)

where xi and yi are the x - y coordinates of an individual
ray’s intercept with the output plane, and N is the number of
rays in the beam.

C. Paraxial Focal Point

Throughout the investigation, a method to determine the
paraxial focal point of a lens using a test-ray was developed.
However, this value needed to be compared to the theoretical
prediction. For this, the paraxial approximation was used. Any
given spherical refracting surface has a focusing power, which
determines the amount by which light is refracted through it.
The focal power is given by [4]

P =
n2 − n1
rc

(4)

where n1 and n2 are the refractive indices before and be-
yond the surface respectively, and rc is the radius of curvature
of the spherical surface. The focal distance is the reciprocal of
the focal power [5]. Hence, the z - coordinate of the paraxial
focal point is given by

f =
rc

n2 − n1
+ z0 + rc for n2 > n1 (5)

f =
rc

n2 − n1
+ z0 for n2 < n1 (6)

since rc is technically negative for a surface with negative
curvature.

These equations are an approximation assuming that the
angles of incidence and refraction are very small, hence why
they apply to paraxial rays only.

III. METHODOLOGY

A. Setting up the Classes

The main three classes that make up the code are Ray,
RayBundle, and OpticalElement. The two classes Spherical-
Refraction and OutputPlane both inherit from OpticalElement.
Their methods include finding intercepts with rays, refracting
rays, and plotting them. They are related as illustrated in Fig.3.

Fig. 3: Block Diagram to show the relationship between the
classes of objects involved in the project.

Ray represents any given ray of light characterised by a
list of all position and direction vectors. RayBundle has a
method generate() to configure a raybundle of a given radius
consisting of concentric circles of rays with uniform density.
The RayBundle class is therefore composed of objects of the
Ray class. The rays are distributed in the x – y plane as shown
in Fig.4.

Fig. 4: Scatter graph to show the start points of the rays in a
raybundle of diameter 10 mm in the x - y plane.

This raybundle can then be propagated through the optical
system. Propagating the ray means that each surface in turn
finds the intercept of the ray with itself, and refracts the
ray by applying Snell’s Law. This continues throughout all
the surfaces until the output plane is reached and the rays
terminate.
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B. Finding Intercepts

1) Flat Surfaces: The incident ray has a know starting point
and direction. For a refracting surface with zero curvature, the
z – coordinate of the intercept is fixed at z0. Hence, simple
vector calculations can be used to find the scalar distance
between the last point of the ray and the intercept, l:

l =
z0 − pz
kz

(7)

where pz and kz are the z - components of the position and
the direction vector of the ray respectively. Now the intercept
q is

q = p+ lk (8)

The same method was used to determine the intercept of
any given ray with the output plane.

2) Curved Surfaces: For a curved surface, the distance
between the last point of the ray and the intercept, l, is given
by [6]

l = −r · k̂ ±
√
(r · k̂2 − (|r|2 − r2c ) (9)

where r is the vector from the centre of curvature of the
spherical surface to the last point of the ray, k̂ is the last
direction vector of the ray, and rc is the radius of curvature.
For positive curvatures, the square root was subtracted from
the dot product to find the leftmost intercept. For negative
curvatures, the square root was added.

C. Determining the Paraxial Focal Point

In order to find the paraxial focal point of the surface, a test-
ray close to the axis was configured and propagated through
each surface in turn. Finally, the point at which it intercepts
the z - axis was found and the output plane was positioned
there. The test-ray started at coordinates p = [0.1,0,0] and
travelled in the direction k = [0,0,1]. A smaller starting x –
coordinate would have increased the accuracy of the focal
point; however, rounding errors meant that smaller values
returned None. Fig.5. shows a ray diagram of a raybundle
with diameter 60 mm being refracted by a spherical surface at
z0 = 100mm with curvature 0.03 mm−1. The refractive index
beyond the surface is 1.5168. The output plane is located at
the paraxial focal point.

Fig. 5: Ray diagram demonstrating LSA at the focal point.

Towards the right side of Fig.5., LSA is clearly shown, as
the rays which started furthest form the z - axis spread out.

The theoretical prediction for the z - coordinate of the paraxial
focal point was calculated with equation (5) to give

ftheory = 200.0mm

whereas the value found using the test-ray method was

ftest = 200.0mm

Both values are the same, so the test-ray method works for
this case. The deviation from the theoretical value is negligible.
Testing of the code confirmed this for all tested scenarios.

IV. TESTING BOTH ORIENTATIONS OF A PLANO-CONVEX
LENS

A plano-convex lens consists of one flat and one convex
side. These were generated by two spherical refracting sur-
faces, one with curvature 0.03mm−1 and one with 0mm−1.
The correct orientation of this type of lens means that light
passes through the curved surface first and then the flat surface,
as shown in Fig.6. With the wrong orientation, the light beam
hits the planar surface, and then the curved surface, as in Fig.7.
The spherical surface has a curvature of −0.03mm−1 in this
case because it is pointing to the right. The LSA of the plano-
convex lens in both of these cases were compared for a beam
consisting of concentric circles of light rays with a diameter
of 10 mm. The refractive index of the inside of the lens was
taken to be 1.5168. Again, the output plane was positioned to
be at the paraxial focal point, which was found by using the
test-ray method as outlined previously.

Fig. 6: Ray diagram of the cross section at y = 0 of a raybundle
of diameter 10 mm being refracted by a plano-convex lens
orientated the correct way (curved surface, then flat surface)

Fig. 7: Ray diagram of the cross section at y = 0 of a raybundle
of diameter 10 mm being refracted by a plano-convex lens
orientated the wrong way (flat surface, then curved surface)

There are significant differences between the two cases. As
seen faintly in the ray diagrams, when the lens is correctly
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orientated, the rays are refracted twice rather than only chang-
ing direction once. This is because a ray travelling along the
normal of a planar refracting surface does not change direction
as it is propagated through it. If the ray has already been
refracted through the convex surface, it travels at an angle to
the normal of the plane and will be refracted again.

Not only is the focal point closer to z0 when the lens
faces the correct way, but spherical aberration has a visibly
smaller effect. This was investigated further by plotting a
scatter diagram of the rays hitting the output plane at the
paraxial focal point for both cases, as illustrated in Fig.8.

Fig. 8: Scatter graphs of the rays intercepting the output plane
at the paraxial focal point. The wrong lens orientation is in
blue on the left, the correct one in red on the right.

Both of these diagrams have the expected shape, where the
outer concentric circles hit the surface further away from the z
– axis and were refracted by a much greater angle. The radius
of the outer circle is much smaller in the red graph in Fig.8.,
when the lens is orientated correctly. The rms values of the
distance from the z - axis gave the following results

correct orientation: rms = 0.0209mm

wrong orientation: rms = 0.0843mm

As expected, the rms value of the spherical aberration of the
plano-convex lens as it is orientated the correct way around
is much smaller. This is because the beam is more focused.
Orientating a plano convex lens is crucial, since it quarters the
LSA.

V. EVALUATION

The main source of error in this investigation comes from
rounding and small angle approximations. For example, the
test-ray to find the paraxial focal point could be placed closer
to the z - axis. This would increase the accuracy of the paraxial
focal point. However, any smaller x - value was rounded down
by Python to give zero. This did not yield a useful result.

The project assumed that the effects of diffraction of the
light rays due to the surfaces were negligible. The scale of
diffraction is approximately [6]

diffraction scale =
λf

D
(10)

where λ is the wavelength of light, f is the focal distance, and
D is the beam diameter. Assuming a wavelength of 588 nm
[6], the diffraction scale for a 10 mm diameter beam incident
to a spherical refracting surface of curvature 0.03 mm−1 is
about 4 × 10−6mm. This value is very much smaller than

the amount of spherical aberration, which is approximately of
the order of magnitude 10−1mm. The effect of diffraction is
therefore negligible.

A main part of the investigation was Snell’s Law, which
predicts the angle at which a ray will be refracted. Rays may
not behave exactly as predicted by Snell’s Law [7] when it is
applied locally at a given point, i.e. the intercept of the ray and
the refracting surface. However, since the aim of the project
is more macroscopic and aimed to find the focal point of a
collection of rays rather than accurately modelling a single ray
at every point, this possible small deviation can be ignored.

Although testing of the code was carried out after every
step, it is possible that there are certain scenarios which cause
errors in the or let systematic errors arise. However, for simple
cases, the code works as predicted.

VI. CONCLUSION

In this project, a raytracer program was successfully de-
signed. It manages to simulate various optical systems consist-
ing of rays, spherical refracting surfaces, planar surfaces, and
output planes. The numerical comparisons of the paraxial focal
points and the amounts of spherical aberration with theoretical
prediction showed that there are no significant systematic
errors. It must be considered that the theoretical formulae used
to test the accuracy of the simulation are themselves small
angle approximations, so ideally this program should be tested
experimentally as well.

As an extension, other shapes of refracting surfaces could
be incorporated into the program. In order to minimise LSA,
it may be best to use an aspherical surface, or other types of
lenses; e.g. a biconvex lens. This would have been the next step
in the investigation, given more time. This program provides
a good starting point for further testing. Any other optical
elements can be added and use the OpticalElement class as a
base class.
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